Unit III

- 6. Define quantum theory and classical theory of Raman effect.
- 7. (a) Discuss the principle of IR and NMR spectra in the structure elucidation of organic compounds.
 - (b) Discuss the spin active nuclei, shielding and deshielding term with suitable examples.8

Unit IV

- **8.** Discuss the following:
 - (a) Demonstrate double resonance by providing *two* examples of inorganic molecules 8
 - (b) Assessment of the reaction rate in a fast exchange reaction. 8
- 9. Examine *six* applications of spin-spin coupling alignment in inorganic chemistry. supported by relevant examples.

No. of Printed Pages: 04 Roll No.

31118

M. Sc. EXAMINATION, 2025

(Second Semester)

(2020-21 Onwards)

(Re-appear Only)

CHEMISTRY

General Spectroscopy

Time: 3 Hours [Maximum Marks: 80

Before answering the question-paper, candidates must ensure that they have been supplied with correct and complete question-paper. No complaint, in this regard will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. Attempt all questions: 8×2=16
 - (a) Define electromagnetic radiation.
 - (b) Write *two* examples each of linear and symmetric polyatomic molecules.
 - (c) Define isotopic substitution.
 - (d) Define overtones and combination bands.
 - (e) Define principle of UV spectroscopy.
 - (f) What is nuclear spin quantum number and write its value for 1H, 13C, 15N?
 - (g) What do you understand by first exchange reaction ?
 - (h) Define double resonance.

Unit I

- (a) Illustrate in pictorial fashion the various, rather arbitrary, regions into which electromagnetic radiations has been divided.
 - (b) Discuss various factors which determine the width.
 - (c) Define resolving power. 4

3. Discuss the effect of isotopic substitutions rotational spectra of linear and symmetric top polyatomic molecule.16

Unit II

- 4. (a) Define simple harmonic vibrations. 4
 - (b) The fundamental and first overtone transitions of ¹⁴N¹⁶O are centered at 1876.06 cm⁻¹ and 3724.20 cm⁻¹. Calculate equilibrium vibrational energy, anharmonicity constant, zero-point energy and force constant.
 - (c) Derive the expression for vibrational energy for a diatomic molecule behaving as simple harmonic oscillator.6
- 5. (a) Define Frank-Condon principle with suitable pictorial representation.
 - (b) Discuss the interaction of rotation and vibrations of polyatomic molecules.
 - (c) Write a note on Fortrat diagram. 6